
Predictable and composable multiprocessor
systems for car-entertainment: breaking

resource dependencies

Marco Bekooij, Rene van de Berg, and Kees Goossens

2

Outline

Objectives

Car entertainment
– Application characteristics & system requirements

Breaking resource dependencies
– What resource dependencies are
– Why we want to break them
– How we break them

Predictable and composable FPGA demonstrator

3

Our objectives:

1. Enable independent development of components

2. Maintain robustness despite increasing resource sharing

3. Reduce design and verification effort

4

Strategy: Divide and conquer

use-case

ADC

real-time digital radio job A

PDC CFE

f1

VIT CBE SRC APP DAC

f2

real-time source decoding job B

SRC APP DAC

f3

MP3BR

Temporal isolation of applications (guaranteed by measures in hardware)
– Each job can be designed and characterized independently of other jobs
– Erroneous behavior of a job can not affect behavior other jobs

Objective 1&2

5

Strategy: Abstraction with guarantees
(conservative arrival time data)

v0 v1 v2

Fast (>100Mcc/s)
simulation of
communicating
processes with
time (CP-T)

Instead of:

DSP

mem Arb

NI

I/OExternal
SDRAM

CA

ctrl

μP

Network

Low-level
simulation
(e.g. PV-T)

NI NI NI

$

Objective 3

6

Strategy: Synthesize settings
(prevent iterative design space exploration)

Dataflow synthesis

(cyclic) task graph
multiprocessor
instance

throughput and
latency constraint

scheduler settings and
communication buffer capacities

Objective 3

7

Car entertainment application domain

8

Application model

use-case

input data
stream

task

use-case

SRT video job

task

input data
stream output stream

to display

FRT audio job

task

task output stream
to speakers

task

Jobs are composed of tasks

Simultaneously running jobs together form use-cases

Jobs often have real-time requirements
– Firm (FRT) if deadline misses are highly undesirable (steep quality

degradation)
– Soft (SRT) if occasional deadline misses are tolerable

9

Car entertainment use-case

use-case

use-case

ADC

FRT digital radio job A

PDC CFE

f1

VIT CBE SRC APP DAC

f2

FRT source decoding job B

SRC APP DAC

f3

MP3BR

Observations:
– Reactive system because stream from transmitter cannot be slowed down
– Firm real-time jobs because deadline misses are highly undesirable but

not catastrophic
– Both streams are equally important

10

Resource dependencies

11

Example of a resource dependency

memory ctrl

Memory

Processor 2

Job A

T2

Job B

T1

Processor 1

• Execution time of a task T2 is dependent on access pattern of processor 1.
• Access pattern (traffic) is not known at design time!

• Execution time task T2 is unknown but determines throughput job B
• This type of resource dependency is independent of the priority assignment

HP LP

12

Why do we want to break resource dependencies?

Predictability = bounds on arrival time data
– Analysis of minimum throughput and maximum latency of a job
– Compute scheduler settings and buffer capacities given throughput and latency

constraints of a job

Composability = temporal isolation of jobs
– Robustness (fault containment):

• Prevent that a bug in a job can cause a complete system failure
– Safely measure average performance:

• Measure average throughput of a soft real-time job independently of other jobs
– Security:

• Prevent eavesdropping and withstand denial of service attacks

13

Common questions

Composability ⇔ predictability?
– No: predictable system = real-time system

• Slack of other jobs results typically in higher throughput ⇒ not
composable

– No: composable system = virtual system

• Temporal isolation alone does not guarantee arrival time data

Is temporal isolation not a too strict requirement?
– Earlier arrival data ⇒ higher quality?
– What is an acceptable amount of interference?

• how do we verify that there is always less interference?
– How do we guarantee that race-conditions are not triggered by other jobs?

14

Breaking of resource dependencies

Use only budget schedulers
– Guaranteed cycle budget in a predefined interval of time (e.g. TDM, CBS)

Budget is guaranteed, therefore it is independent of:
– execution times of tasks
– traffic in system
– task model, e.g. data dependent input output behavior and execution rates

15

Flavors of budget schedulers

1. Work-conserving (slack is available for other jobs) :
– Predictability

2. Non work-conserving (slack not available for other jobs):
– Predictability & composability

16

Predictable memory port arbitration

proc2

mem

Addr & Data

proc1

arbiter

Credit based memory port arbiter (= a budget scheduler)
• Proc2 has 9 clock cycles out of 10 clock cycles priority

Maximum interference is bounded by construction

mem

17

Dataflow analysis

18

Response time

Response Time (RT)

Execution Time (ET)

ET

RT

enabled
started

finished

start finish

TDM: RT=ET+(P-S)⎡ET/S⎤

period time-slice

19

Simple throughput analysis example

Task-graph T1 T3

WCET=1ms

T2

WCET=1ms

WCET=1ms

Assume:
• T1 and T2 share one processor, each task get a TDM-slice of 1 ms every 2 ms
• Each task produce and consume one token per execution
• Capacity of each buffer is 2 tokens

What is the minimum throughput?

20

Throughput analysis T1 T3

WCET=1ms

T2

WCET=1ms

WCET=1mstask-graph

Dataflow graph A1 A3

WCRT=2ms

A2

WCRT=1ms

WCRT=2ms

21

Monotonicity

Monotonic temporal behavior:
– An earlier production of a token cannot result in a later start of an actor

during self-timed execution

Consequence:
– Sufficient to show that a schedule exist that satisfies the throughput and

latency constraints given worst-case response times
– Smaller response time result in earlier arrival tokens

• Scheduling anomalies do not occur during self-timed execution of a dataflow
model

Requires sequential firing rules

vyvx

Earlier arrival token
results in earlier start
vx and vy

22

Valid schedule
A1 A3

WCRT=2ms

A2

WCRT=1ms

WCRT=2ms

A1

A2

A3

2 4 6 8 10

1/Throughput = 2.5 ms/token

23

Cyclic data dependencies

BR MP3 SRC DAC

44.1 kHz

480 441

576
3 n=[1..100] 1

Digital to analog converter (DAC) determines throughput constraint

MP3 decoder task consumes each execution a different amount of
data
– No periodic schedule exist for the BR task!

Block-reader (BR) task must “know” consumption speed MP3 task
– Implies cyclic data dependency that affects the temporal behavior!

[M. Wiggers et.al.,DATE 2008]

24

Temporal isolation

25

Temporal isolation of jobs
(no processor sharing)

Insufficient resources available to start job C
– Check this with admission control

Job C
?

System in state 1

Job A Job B

Processor 1 Processor 2

26

Temporal isolation with processor sharing

Sufficient resources available to start job C

Resources allotted to job A and job B remain unchanged

Undisruptive reconfiguration

System in state 1

Job A Job B

Processor 1 Processor 2

System in state 2

Job B

Processor 1 Processor 2

Job C
Job C

Job A

27

FPGA demonstrator

Æthereal

MEM

DTLt DTLi DTLs

VLIW-2

DTLi

M
E

M

DTLt DTLs

DTLt DTLi DTLs

VLIW-5

DTLi

M
E

M

DTLt DTLs

DTLt DTLi DTLs

DTLt

DTLi

Audio I/O

DTLs

DTLs

Frame buffer

DTLt

DTLi

D
T

L
t

Host PC

• Only one network in system
• for control, data, debug

• 2x2 mesh router network
• guaranteed throughput

• SiHive VLIW core
• Ansi-C compiler

• PC used as control processor
• High level re-configuration API

• setup & tear-down connections
• starting & stopping tasks

VLIW-1

DTLi

M
E

M

DTLt DTLs

Differentiators:
• Temporal isolation = behavior of a job cannot be affected by another jobs
• Predictable = upper-bound arrival data can be computed at design time

28

Summary

We break resource dependencies because:
1. Predictability:

– compute settings given throughput and latency constraints of firm real-time
jobs with cyclic dependencies

2. Temporal isolation:

– independent characterization of the temporal behavior of software jobs

– robustness

Budget schedulers break resource dependencies
– Examples of budget schedulers are time division multiplex, and constant bandwidth

server

Cost of breaking dependencies:
– Work conserving: different way of designing your system
– Non-workconserving: waste slack created by tasks of other jobs

• but lower cost than private hardware for each job

29

Questions?

30

References
B. Akesson, K. Goossens, and M. Ringhofer. Predator: A Predictable SDRAM Memory
Controller. In Proc. Int’l Conference on Hardware-Software Codesign and System Synthesis
(CODES+ISSS), 2007.

M. Bekooij, A. Moonen, and J. van Meerbergen. Predictable and Composable Multiprocessor
System Design: A Constructive Approach, In Proc. Bits&Chips Symposium on Embedded
Systems and Software, October 2007, Eindhoven, The Netherlands.

M. Bekooij, M.Wiggers, J. van Meerbergen, Efficient Buffer Capacity and Scheduler Setting
Computation for Soft Real-Time Stream Processing Applications, In Proc. Int’l Workshop on
Software and Compilers for Embedded Systems (SCOPES), April 2007.

A. Kumar, A. Hansson, J. Huisken and H. Corporaal. An FPGA Design Flow for Reconfigurable
Network-Based Multi-Processor Systems on Chip. In Proc. Design, Automation and Test in
Europe Conference and Exhibition (DATE), April 2007.

A. Moonen et.al. A Multi-Core Architecture for In-Car Digital Entertainment, GSPX publication
24-27 October 2005: In Proc. Int’l Conference on Global Signal Processing (GSPx), October
2005.

O. Moreira and M. Bekooij. Self-Timed Scheduling Analysis for Real-Time Applications, In
EURASIP Journal on Advances in Signal Processing, 2007

31

References
O. Moreira and M. Bekooij. Scheduling Multiple Independent Hard Real-Time Jobs on a
Heterogeneous Multiprocessor, In Proc. Int’l Conference on Embedded Software (EMSOFT),
September 2007

S. Sriram and S. S. Bhattacharyya. Embedded Multiprocessors: Scheduling and
Synchronization. Marcel Dekker Inc., 2000

D. Stiliadis and A. Varma. Latency-Rate Servers: A General Model for Analysis of Traffic
Scheduling Algorithms. In IEEE/ACM Transactions on Networking, 6(5):611–624, October
1998.

S. Stuijk, T. Basten, M.C.W. Geilen and H. Corporaal. Multiprocessor Resource Allocation for
Throughput-Constrained Synchronous Dataflow Graphs, In Proc. Design Automation Conference
(DAC), June 2007.

M. Wiggers, M. Bekooij, and G. Smit. Modelling Run-Time Arbitration by Latency-Rate Servers
in Data Flow Graphs. In Proc. Int’l Workshop on Software and Compilers for Embedded Systems
(SCOPES), April 2007.

M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficient Computation of Buffer Capacities for
Cyclo-Static Real-Time Systems with Back-Pressure. In Proc. IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), April 2007.

M. Wiggers, M. Bekooij, and G. Smit. Computation of buffer capacities for thoughput
constrained and data dependent inter-task communication. In Proc. In Proc. Design, Automation
and Test in Europe Conference and Exhibition (DATE), April 2008

